ROBUSTNESS OF BOOTSTRAP IN INSTRUMENTAL VARIABLE REGRESSION By

نویسندگان

  • Lorenzo Camponovo
  • Taisuke Otsu
چکیده

This paper studies robustness of bootstrap inference methods for instrumental variable regression models. In particular, we compare the uniform weight and implied probability bootstrap approximations for parameter hypothesis test statistics by applying the breakdown point theory, which focuses on behaviors of the bootstrap quantiles when outliers take arbitrarily large values. The implied probabilities are derived from an information theoretic projection from the empirical distribution to a set of distributions satisfying orthogonality conditions for instruments. Our breakdown point analysis considers separately the effects of outliers in dependent variables, endogenous regressors, and instruments, and clarifies the situations where the implied probability bootstrap can be more robust than the uniform weight bootstrap against outliers. Effects of tail trimming introduced by Hill and Renault (2010) are also analyzed. Several simulation studies illustrate our theoretical findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Machine Learning Alternative to P-values

This paper presents an alternative approach to p-values in regression settings. This approach, whose origins can be traced to machine learning, is based on the leave-one-out bootstrap for prediction error. In machine learning this is called the out-of-bag (OOB) error. To obtain the OOB error for a model, one draws a bootstrap sample and fits the model to the in-sample data. The out-of-sample pr...

متن کامل

A Consistent Nonparametric Bootstrap Test of Exogeneity

We propose a way of testing exogeneity of an explanatory variable without any parametric assumptions in the presence of a conditional "instrumental variable". A testable implication is derived that if an explanatory variable is exogenous, the conditional distribution of the outcome given explanatory variables is independent of the instrumental variable. We propose a consistent nonparametric boo...

متن کامل

Sieve Instrumental Variable Quantile Regression Estimation of Functional Coefficient Models∗

In this paper, we consider sieve instrumental variable quantile regression (IVQR) estimation of functional coefficient models where the coefficients of endogenous regressors are unknown functions of some exogenous covariates. We approximate the unknown functional coefficients by some basis functions and estimate them by the IVQR technique. We establish the uniform consistency and asymptotic nor...

متن کامل

Computationally efficient approximation for the double bootstrap mean bias correction

We propose a computationally efficient approximation for the double bootstrap bias adjustment factor without using the inner bootstrap loop. The approximation converges in probability to the population bias correction factor. We study the finite sample properties of the approximation in the context of a linear instrumental variable model. In identified versions of the model considered in our Mo...

متن کامل

A branch-and-bound algorithm for instrumental variable quantile regression

This paper studies a statistical problem called instrumental variable quantile regression (IVQR). We model IVQR as a convex quadratic program with complementarity constraints and—although this type of program is generally NP-hard—we develop a branch-and-bound algorithm to solve it globally. We also derive bounds on key variables in the problem, which are valid asymptotically for increasing samp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011